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Motivation

•Deep-sea mining is a burgeoning industry that
could supply rare metals [3]

•The resulting environmental impacts remain
poorly understood

•As vehicles scour the ocean floor, they generate
turbidity currents that will inevitably collide

•Complex models like Navier-Stokes or Shallow-
Water equations (SWE) accurately model the
spread of surface plumes, but are slow

•We seek a simpler model that still captures colli-
sion dynamics between currents

•We create this model by width-averaging solutions
of SWE and using this as training data for the
system identification algorithm known as SINDy
(Sparse Identification of Nonlinear Dynamics) [2]

Box Model

•The standard box model is [4]
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= Fr
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where xb represents the position of the current
front and cb represents its concentration

•The constants V , us, Fr are volume, settling speed,
and Froude number, respectively

•Multiple currents may be simulated concurrently,
but there is no known way to have them inter-
act

•Progression of the system with two non-interacting
currents is shown in Fig 1
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Fig. 1: Current progression of a box-model system
shown at 0.5 time intervals. Color indicates particle

concentration, and y indicates current height.

Shallow–Water Equations

•The Shallow–Water Equations (SWE) are derived from Navier–Stokes.
Unlike the Box Model, are averaged over just height, and not width [4]

•The SWE system we use to generate our training data is [1]
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where h is the height of the current, q is velocity times height, and φ is
concentration times height

•The Reynolds number Re, Péclect number Pe, and settling speed us are
defined as constants

•We numerically solve (3) - (5) using a finite–volume method

•Unlike the Box Model, Shallow–Water Equations allow for collision be-
tween currents, as shown in Fig. 2
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Fig. 2: Progression of a collision in a SWE system; green is before
collision and orange is after collision.

“Boxifying”Method

•We width-average or “boxify” solutions to SWE for system identification

•The primary challenge is identifying the left and right fronts from the
collision, which appear as shocks or reflected bores x2 and x4 in Fig. 2

Box-Generating Method

1. At each time t, locate inflection points in the concentration xc2 and xc4,
near the collision point (see Fig. 2) and defined the current center x3(t)
as

x3(t) =
1

2
(xc2(t) + xc4(t)) .

2. At each time t, identify inflection points in the height x1, x2, x3, x4, x5
such that h′′(xn(t), t) = 0 with xn < xn+1.

“Boxifying”Method (Cont.)

3. Define current width wn = xn+1−xn and averages of height,
hn, and concentration cn, by integrating between adjacent
fronts e.g.

hn(t) =
1

wn

∫ xn+1

xn

h(x, t) dx.

Volumes are then defined as Vn = hnwn for n = 1, 2, 3, 4.

Boxified Result
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Fig. 3: Width-averaged quantities in a SWE collision between
two currents shown in Fig 2.

System Identification with SINDy

•We attempt to identify three separate systems to avoid re-
gressing on a highly underdetermined system

•Using SINDy, the following system describes the inner fronts,
identified from a first degree polynomial library containing
terms Vn and cn

(x2)
′ = 0.48V1 − 0.14V2 − 0.31V3 − 0.49V4 − 0.07c2

− 0.10c3 − 0.06c4
(x3)

′ = 0.51V1 − 0.00V3 − 0.54V4 − 0.01c1 + 0.07c2
− 0.03c4

(x4)
′ = 0.49V1 + 0.11V2 + 0.36V3 − 0.54V4 − 0.19c1

+ 0.33c2 − 0.08c3 + 0.21c4

Identified Systems

•We obtain good agreements over the range chosen
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Fig. 4: Comparison of the identified system. Identified system
shown as dashed lines.

Discussion

•Current results recover time evolution well but are not easy
to interpret physically

•We aim to obtain physically interpretable coefficients through
careful library selection

•A well chosen library should be able to recover and extend
the usual box model
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